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J.  Phys. A: Math. Gen. 15 (1982) 2735-2749. Printed in Great Britain 

Universal power-law tails for singularity-dominated strong 
fluctuations 

M V Berry 
H H Wills Physics Laboratory, Bristol, BS8 lTL, England 

Received 19 January 1982 

Abstract. Integrals of the type Z ( t )  =jj dx dy s( t  - H(x, y ) )  are considered, where H is a 
function from an ensemble labelled by parameters. Z can represent circulation times of 
fluid particles in the plane, orbital periods or semiclassical densities of states for one- 
dimensional Hamiltonian systems, spectral densities for two-dimensional crystals, or the 
strength of a wave pulse produced by propagation of a deformed step discontinuity. As 
H varies over the ensemble, I develops strong fluctuations associated with Legendre 
singularities. For unrestricted functions H, the probability distribution P(1)  describing 
the fluctuations of Z decays according to a universal Z-' law, obtained by a scaling argument 
involving Arnold's classification of catastrophes. If H is only quadratic in y, Pal-". If 
the integral defining Z is one-dimensional, PxZ-~; if it is three-dimensional, Z decays no 
faster than I-48. The probability distribution of 1's laZ/atl decays as U')-*. 

1. Introduction 

This paper is intended to demonstrate a remarkable statistical property of integrals I 
of the type 

I ( t , { G } ) = / /  dyS(r-H(x, y;{C'i})). (1) 
P 

H is an ensemble (i.e. a family) of smooth functions of the two variables x, y labelled 
by an arbitrary number of parameters {Ci}={Co, C1 . . .}, and the integration domain 
9 is the whole xy plane or some fixed finite part of it; all quantities are real. The 
Dirac S function implies that I is a property of the contour having height r in the H 
landscape; this contour need not be simply connected. Obviously I is never negative. 
Before explaining the problem to be studied, a list will be given illustrating the wide 
range of physical contexts in which I arises. 

(i) Fluid circulation rimes. H is the stream function (vector potential) for a steady 
two-dimensional incompressible flow, with velocity components 

ox = aH/ay U, E -aH/ax. (2) 

Then I is the time taken by fluid particles traversing the stream line (contour) within 
9 and labelled t. To see this, simply denote the arc length along the contour by s, 
and use (1) (fixing {Ci}), so that 
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2736 M V Berry 

In many cases (whose precise specification is not relevant here) the stream line will 
consist of one or more closed curves lying entirely inside 9. 

(ii) Hamiltonian orbit periods. H is the Hamiltonian for a system with a single 
coordinate x and momentum y .  The evolution of the system is governed by Hamilton‘s 
equations (2), and the same argument as that based on (3) shows that I is the total 
time taken to traverse all orbits with energy t within 9. 

(iii) Semiclassical density of states. With H as in (ii), I is (apart from a factor 
(Planck’s constant)-’) the asymptotic density of eigenstates, at energy t, of the quantal 
Hamiltonian corresponding to H. 

(iv) Crystal density of states. x and y are crystal momentum components of 
electrons in a two-dimensional periodic structure, and H describes a single quantal 
energy band. Then I is the density of electron states at energy t. 

(v) Wave pulses. Consider a wave (b (X,  Y, 2, t )  in three-dimensional space propa- 
gating with speed c according to the ordinary linear scalar non-dispersive wave 
equation. Initially the wave is a step pulse with a plane wavefront moving in the 
positive Z direction. For some negative 2 values the wave encounters a refracting 
medium whose effect is to deform the wavefront so that the wave arriving at 2 = 0 is 

(41 

where 0 is the unit step function and h(X ,  Y )  is the height function describing the 
wavefront deformation. It is shown in appendix 1 that provided h has small slopes 
(‘paraxiality’) the wave reaching Z > 0 at time t is 

(b (X,  Y, 0, t )  = @(t + h ( x ,  Y ) / c  1 

1 ( X  - x ) * +  ( Y  - y y  
d ( X ,  Y , Z , t ) = ~ 1 ~ d x d y S ( c r - ( Z - h ( x , y ) +  2 2  

This is obviously of the form (1), with X,  Y and 2 considered either as fixed or as 
three of the parameters {Ci} (other parameters will label members of an ensemble of 
wavefront deformations h) .  

What will be studied here is the form of the tail of the probability distribution of 
I over the ensemble parametrised by ICi}, i.e. 

P ( I )  = ( a ( I  - I ( t ;  {Cil))) 

Pc is the density of realisations of the ensemble over {G}; for example if {C;} are the 
random phases (uniform on 0 s Ci < 2 ~ )  in a Gaussian ensemble of functions H, PC 
consists simply of a factor 1/27r for each C;. The t dependence in (6) turns out to be 
inconsequential and is not explicitly denoted in P ( I ) .  

The tail of P(I )  describes strongfluctuations in I over the ensemble, and the strong 
fluctuations arise because functions of type (1) have singularities in the space (t ,  {Ci}). 
The singularities arise (cf (3)) whenever VH vanishes (i.e. wherever H has a critical 
point) somewhere on the t contour contributing to (l), and their locus in ( t ,  {Ci}) space 
is obtained by eliminating x ,  y from 

These equations define Legendre singularities, whose form and classification are disc- 
ussed bv Arnold (1975, 1976) and Sewell (1977, 1978). 



Singulan‘ty-dominated strong fluctuations 2737 

In the examples described above, the Legendre singularities are realised as (i) fluid 
vortices (i.e. static centres of local rotation) or stagnation points (Berry and Mackley 
1977); (ii) and (iii) Hamiltonian elliptic and hyperbolic fixed points (Arnold 1978); 
(iv) Van Hove singularities (Wannier 1959); (v) geometrical optics wavefronts (Berry 
1972, Dangelmayr and Guttinger 1982). 

According to (7) the singularities are hypersurfaces with codimension unity in 
(t, {Ci}) space. Almost everywhere the surfaces are smooth and correspond to the H 
landscape having a generic extremum (elliptic contours shrinking to a point) or a 
generic saddle (hyperbolic contours centred on a cross). On crossing the singularity 
surface, I has a step discontinuity in the case of an extremum and a logarithmic spike 
in the case of a saddle. 

Of crucial importance in the present study are loci of higher codimension, where 
the singularity surface is not smooth. Such a locus corresponds to the coalescence of 
two or more places where VH vanishes, i.e. to the catastrophe set of degenerate critical 
points, satisfying 

in addition to (7). As will be described in 8 2, the geometrically distinct morphologies 
of degeneration are classified as catastrophes (Poston and Stewart 1978). 

For each catastrophe, I has a power-law divergence as t varies through the 
catastrophe set on the singularity surface. These divergences dominate the fluctuations 
of I and contribute to the asymptotic decay of P(I ) .  Higher catastrophes give stronger 
divergences but are also rarer and so have smaller weight in the ensemble average 
(6) over {Ci}. These competing effects give rise to a ‘battle of the catastrophes’ (§ 3) 
to determine which degenerate singularity dominates P(I ) .  The remarkable result 
will be that the battle is won by the elliptic and hyperbolic umbilic catastrophes, giving 
the universal result 

P ( I )  a I - ~ .  (9) 

Section 4 is devoted to a discussion, motivated by example (iv) above, of the very 
different behaviour of P ( I )  when the integration in (1) is over one or three dimensions, 
rather than two. Section 5 is devoted to a discussion, motivated by example (v) above, 
of the very different behaviour of P ( I )  when I corresponds to propagation of an initial 
S pulse rather than the step of equation (4). 

This work makes essential use of catastrophe theory in the form of the extensive 
classification of singularities developed by Arnold (1973, 1974, 1975), and goes far 
beyond the now familiar fold, cusp, swallowtail, etc. The central argument will involve 
scaling laws developed by Berry (1977) and refined for a certain class of cases by 
Hannay (1982) in a study of strong intensity fluctuations of monochromatic short 
waves, which are dominated by caustic singularities. 

2. Probability-tail exponents 

The tail I+OO of the ensemble average (6) will be dominated by the Legendre 
singularity in {Ci} space corresponding to the given value of t. It is therefore sensible 
to expand the integrand, and in particular I( t , {Ci})  inside the S function, for {Ci} 
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values close to the singularity. The local expansion will be different depending on 
which catastrophe dominates the Legendre singularity in the {Ci} space region under 
consideration. Let this catastrophe (fold, cusp, umbilic, etc) be labelled j and have 
codimension K. This is the codimension within the Legendre singularity; the 
codimension in {Ci} space is K + 1, so that a non-degenerate extremum or saddle of 
H, which is not a catastrophe and so has K = 0, corresponds to the Legendre singularity 
with codimension 1, i.e. it is the smooth surface previously discussed. Let the 
catastrophe be located at (CT, . . , , CZ) ,  so that C i , ~  correspond to parameter space 
directions ‘along’ the singularity and CO is an additive constant corresponding to the 
t value at which the singularity occurs. 

Near {C?}  (1 s i s K )  it is always possible by a diffeomorphism to write H as 

H = CO+ @ j ( x ,  Y ;  {GI) l < i < K  (10) 

where Ci now denote deviations from CT and where ai is a polynomial normal form 
(Arnold 1973, 1974, 1975) for the catastrophe j .  For example, if j denotes the elliptic 
umbilic catastrophe, 

(11)  3 
@E” = x -3xy2+ C 3 ( X 2  + y 2 )  + c 2 y  + C l X .  

Therefore (1) becomes, locally, 

The first objective is to scale away t - CO, to prepare for a further scaling in the 
ensemble average (6). To this end, (12) is written as a Fourier transform: 

1 “ d k  
27r k Ij(t -CO, {C,}) = - I - Yj(k; {Ci}) exp{-ik(t - CO)} 

where 

Y i ( k ;  {C,}) = k [J” dx d y  exp{ikcPj(x, y ;  {C,})}. 

Trivial relabelling of the k variable gives 

1 “ d k  k 4 ( t  - CO ; { C, }) = - I - qj( - * { C,}) exp{ -i k sgn ( t - CO)}.   IT --OD k lt-Co/’ 

(13)  

Now observe that qj as defined by (13) is the jth diffraction catastrophe, i.e. the 
monochromatic wavefunction decorating the caustic singularity of the jth catastrophe. 
As such, it satisfies the scaling law (Berry 1977, 1980, Berry and Upstill 1980) 

(15) 

whose origin lies in the fact that each normal form Qj (e.g. (11)) can be written as a 
‘germ’, involving x and y but not {Ci}, plus K ‘unfolding terms’ linear in {C,}. In the 
waves which (13) describes, pi describes the divergence of the amplitude /Yjl ( - k P J )  
at the most singular point on the geometrical caustic as k + CO, and (+,J describes the 
shrinking of the fringes in the C, direction (-k-“l.J) as k + m. An important role is 
played by 

q j (k  ; {Ci}) = (k/kO)’lqj(ko; {Ci(k/ko)uL.l}) 

K 
yj= u j , j  (161 

i = l  
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which describes the scaling of the Kdimensional hypervolume of the principal diffrac- 
tion maximum (-k-'j) as k -* a. Pi was introduced by Arnold and studied in detail 
by Varchenko (1976), and ( T ~ , ~  and yi were introduced by Berry (1977). 

Inserting the scaling law (15) into (14) and using (12) gives 

4(t - c0, {cJ) = It - Col-BjIi(sgn(t- CO), {Gilt - t O l - ' i ~ j } ) .  (17) 

This shows that as t varies through the contour level CO of the singularity, in the case 
Ci = 0 (1 c i c K) corresponding to the highest degeneracy of the critical point of H, 
I has a power-law divergence with exponent pi (as was shown for the simplest cases 
by Dangelmayr and Guttinger (1982) in the context of the wave pulse example (v)). 
For the lowest Legendre singularity, which is not a catastrophe because it corresponds 
to a non-degenerate critical point of H, Pi is zero and (17) is consistent with the fact, 
already stated, that the singularity in I is not a power law but a discontinuity or 
logarithm. 

Now the stage is set for evaluating the ensemble average (6). The contribution 
P j ( I )  to the probability distribution P ( I ) ,  from the jth catastrophe centred on CT 
(1 si cK), is obtained by transformation to K + 1 standard coordinates in (lo), and 
use of the scaling (17). This gives 

Pj(I) = J dCK+1* * J J dCo dC1.9 J dCKPc(C0, C T s i s K ,  C i > K ) J ( C O ,  C T s i s K ,  C i > K )  

(18) 

where J is a non-singular Jacobian introduced by the transformation. For large i, the 
S function restricts CO to values near f ,  and an obvious scaling of Ci (1 s i s K )  by 
If - C0Iui.i and use of (16) gives 

x S [ I  - It - Col-Bj4(sgn(t - CO), {Gilt - Col-ui~j})I 

(19) 
where 

BjE I dCK+1 * * *PC(Co=f, CTs&isK, Ci>K)J(CO=f, CrsisK, C i > K ) *  (20) 

The constants Bi, not involving I, depend on the details of the ensemble of functions 
H, but the I dependence is embodied in a series of integrals depending only on the 
normal form for the catastrophe j .  

The final step in extracting the I dependence is to integrate over CO using the S 
function in (19). There are at most (and usually exactly) two contributions from 

CO, = t r (Ij(*l, { C i } ) / p %  (21) 
Using standard procedures for integrating a S function of a function, the final result 
is obtained as 

Pj( l )=B,(JdC1 . . . I  d c ~ ( [ ~ ( + 1 , { c i } ) ]  (Y,+WB, + [Ii(- 1, { ~ i } ) ~ ~ y j + l ~ / ~ i ) ) ~ - ~ l + ~ y j + l ~ / B j ~  

Pi 
(22) 

Therefore each catastrophe contributes a power-law decay to P ( I ) ,  with (negative) 
exponent depending on the detailed algebra of the normal form. The principal 



2740 M V Berry 

contribution obviously comes from the catastrophe giving the smallest exponent, 
provided this exists, and so 

P(I)Kl-“+c”’  (23) 

where 

The computation of g will be carried out in the next section. 
It must be pointed out that the above analysis requires that the two integrals 

in brackets in (22) converge for the catastrophe j winning the competition (24). 
Non-rigorous arguments indicating that these integrals do converge are given in 
appendix 2. 

3. Battle of the catastrophes 

The computation of the indices pi and yi involved in (24) has been explained by Berry 
(1977) and will not be repeated here. The results of the computations are embodied 
in table 1 whose columns will tow be explained. 

In the first column the singularities are listed using the notation of Arnold (1973, 
1974, 1975). Of these, only the cuspoids AK+l have corank 1, meankg that these 
catastrophes involve critical-point degeneration in just one direction in the x y  plane; 
the remaining singularities have corank 2. It is worth pointing out that the celebrated 
fold, cusp, swallowtail, butterfly, elliptic/hyperbolic umbilics, and parabolic umbilic 
catastrophes described by Thom (1975j are, respectively, AZ, A3, A4, D4, D5. 

The second column lists the germs of these catastrophes, that is the normal forms 
for the function H corresponding to the highest degeneration of critical point. The 
codimension K, in the third column, is the minimum number of parameters which 
unfold the degenerate critical point in all possible ways. 

In the next column, modality is the number of moduli, denoted by a, b, c in the 
germs, which label continuous families of catastrophes whose singularities are topologi- 
cally equivalent but not equivalent under diffeomorphism. In the present context, 
modality is a technicality not of paramount importance. 

In the fifth, sixth and seventh columns the indices pi and yj are listed whose meaning 
was explained in 0 2, and the combination ( yj + 1)/& occurring in (24). The values of 
pi are in full agreement with those calculated previously by Varchenko (1976). The 
significance of the last column will be made clear in 8 4. (While the computation of 
pi involves only the germ, the computation of yi involves the unfolding terms, listed 
by Arnold (1974) but not shown in table 1.) (See Note added in proof.) 

According to (24), the decay exponent p is the smallest value of (yi + l > /p j  in the 
seventh column. For the cuspids  AK+l, the first few values are 

Az(f0ld): 10 A ~ ( c u s ~ ) :  9 A4(swallowtail): 95 (25) 

and all higher cuspoids have larger values. Therefore the cuspoid competition is won 
by the cusp catastrophe. For the umbilics 

D4(elliptic/ hyperbolic): 8 D5(parabolic): 9 D g :  9$ (26) 

and all higher umbilics have larger values. Therefore the umbilic competition is won 

the first few values are 
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by the ellipticlhyperbolic umbilic catastrophes. For the singularities YP4, the lowest 
( p  = 5 )  has the smallest value, equal to 91. 

It is clear then, from inspection of table 1, that the overall competition is won by 
D4 with p = 8, so that (23) indicates that P ( I )  does indeed have the ninth power 
decay of equation (9). This is the central result of the present work. Of course, it 
could happen that some as yet unclassified high catastrophe could have a smaller 
value of p, but the trend of table 1 makes this seem most unlikely. 

Now consider the special class of systems where the function H in (1) depends on 
y at most quadratically, i.e. trivially and non-degenerately, so that all essential 
functional dependence is in the x variation. This happens for examples (ii) and (iii) 
in § 1 if the Hamiltonian represents a non-relativistic particle moving in a scalar 
potential, i.e. 

H = : y 2 +  V ( x ;  {Ci}). ( 2 7 )  

It also happens in example (v) when wave pulses encounter a medium generating a 
corrugated wavefront, i.e. one whose height function h depends on X only. Then 
only corank-1 catastrophes, namely cuspoids, are permitted to enter the catastrophe 
competition, and (25) shows that the winning cusp gives a faster decay for P ( I ) ,  namely 

P ( I )  al-"(cuspoids) (28) 

as the universal tail for this class of problems. 

4. One- and three-dimensional crystal spectra 

In the case of crystal spectra (example (iv) of 0 l ) ,  the restriction to two dimensions 
is artificial, and it is desirable instead of (1) to study the fluctuations of the more 
general integral 

r r 

J J 

especially for n = 1 and n = 3. 
The analysis proceeds as in 0 2, up to equation (12a) where instead of dklk there 

appears dkjk"". This is because the generalisation of (13) has a prefactor kn'2 rather 
than k-a natural n-dimensional generalisation ensuring that non-degenerate (quad- 
ratic) contributions to the phase CP do not contribute to the caustic singularity as 
k +CO. With this definition of the diffraction catastrophes qj, the scaling law (15) is 
unchanged, but the important scaling law (17) for I generalises to 

I,,j(sgn(t - CO), {Gilt - t ~ l ~ ' . ~ } ) .  (30) (J3,+l-n/2) 

The rest of the argument proceeds as in 8 2, leading to the results (23) and (24) for 
P(I,), apart from the substitution 

(31) 

This apparently innocent modification has far-reaching consequences, which will be 
considered separately for n = 1 and n = 3. 

L,j(t-Co, {ciI)=It-Co/- 

pi + pi + 1 - n/2 .  
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For n = 1, pi must be replaced by pi + f and only cuspoids (corank 1) may compete. 
According to (30), even the non-degenerate Legendre singularity (pi = 0) gives an 
inverse square-root divergence in Il (a fact obvious from (29) on setting H -x2), as 
opposed to the discontinuities and logarithms when n = 2. Moreover, these generic 
critical points of H give rise to the slowest probability-tail decay, because the first 
row of table 1 gives 

(32) 

which is smallest when K = 0. Therefore the fluctuations in one-dimensional crystal 
spectral densities are not catastrophe dominated, and 

(Yj + l)/(pj +f) = $K + 2  

P ( I ~ )  CC I ; ~ .  (33) 
For n = 3, pi must be replaced by pi -$., and as well as catastrophes in table 1 it 

is necessary to allow catastrophes of corank 3 to compete. But now, according to 
(30), no catastrophe with pi s i  gives rise to a power-law divergence in 13. In particular, 
generic critical points (pi =0) give singularities of the type (r-Co)c1'2 in 13. All 
catastrophes with pi S$-which include all cuspoids AKcl and umbilics DK+l-can 
therefore be ignored in the comparison leading to the probability decay exponent p. 

The remaining catastrophes include all those in table 1 below and including Zll, 
and the ten corank-3 catastrophes in table 2. The competing values of (yi + 1)/& -4) 
are listed in the last columns of tables 1 and 2. For the lowest competing catastrophe, 
(210 with K = 8, the decay from (23) is 1;"'. Unfortunately, the most complicated 
of all the listed catastrophes-V15 with three moduli and corank 3-is the one giving 
the smallest exponent, i.e. 48. It therefore seems that the present classification of 
singularities of corank 2 and corank 3 is not sufficiently extensive to include the winner 
of this competition. All that can be said at this stage is that 

~ ( 4 )  3 as13+m (34) 
or, more precisely, 

Table 2. Some corank-3 catastrophes with Pi > f. 

Catastrophe j Germ 

Qio 

Q i i  

Q12 

s11 

s12 

U1 2 

Qi4 = Q2,o 

s 1 4 =  s l . 0  

u 1 4 =  Ul.0  

v15 = Vl.0 

x 3 + y 4 + y z 2 + a x y 3  8 
9 

9 

10 
11 
11 
11 

x 4 +  y 4 +  x z 2 + a y z 2 +  b x 2 y 2 + c y 2 z Z  11 

x3 + y 2 z  +xz3 + azs 

x 3 + y 5 + y z 2 + a x y 4  10 
x4+ y 2 z  +xz2 + a x 3 z  

x 2 y + y 2 z  + x z 3 + a z s  10 
x 3  + y 3  + z4  + z x y z 2  

x 3  + y 6  + y z 2  + a x 2 y 2  + by' 

x 2 y  + x z  + y 5  + a x y 3  + b x y 4  

x 3  + y 3 + x z 3 + a y z 3  + b z y 4  

- '4' 114 
3i 4 90 

3 80 

68 
9 62 

72 
5 58 
3 51 

- 13 
24 
5 

17 - 13 
3ij 
9 
16 
- 1s 
26 
7 
12 

!E 79 - 

- 
- 
:2 5 
3 

t Y 47 

- 24 

- 11  - 14 
18 
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5. Fluctuations in &wave pulses 

In the case of example (v) of 3 1, it is natural to consider not only the propagation 
of an initial step discontinuity (4) but also the propagation of an initial 8 pulse, i.e. 
the time derivative of (4). The resulting wave (which may now be negative) is simply 
the time derivative of ( 5 ) ,  and its magnitude can be expressed in terms of (1) by the 
positive quantity 

(36) 
a 

~ ’ ( t ,  {GI)= l-z(t; at {ciI)i- 

In order to find the probability tail for the fluctuations in 1’, the argument of S 2 
is employed, with a slight modification of (12) and (14) leading to the replacement 
of equation (17) by 

(37) 

The rest of the argument proceeds unchanged, and leads to the results (23) and (24) 
for P(I’),  apart from the substitution 

Pj+Pj+l (38) 

(which, curiously, is formally identical with (31) for zero dimensionality n) .  
Now the competition includes all the catastrophes of table 1. But it is won by 

none of them! The smallest value of (y j  + l)/(pj + 1) occurs for pi = yj = 0, correspond- 
ing not to any catastrophe but to generic saddles in H and giving the powerful tail 

I :  ( t  - c0, {CJ) = / t  - ~ ~ 1 - ( ’ i + l ) 1 ;  (sgn(t - c0), {ci/t - t O / ‘ i ~ l ) ) .  

P ( I ’ )  a (I!)-’. (39) 

This result can be made plausible by the following elementary argument. A generic 

(40) 

saddle contributes a logarithmic divergence to I, so that I’ diverges like 

I’ a 1 t - col-’. 
Therefore 

But this argument does not establish the fact that no higher singularity can give a 
stronger probability tail-only the foregoing analysis, together with table 1, can 
demonstrate the lack of catastrophe dominance. 

6. Summary 

The statistics of I, defined by equation ( l ) ,  are indeed remarkable. If H is an 
unrestricted random function of x and y, the main result (9) holds, that P(I)aI-9. 
This is universal, i.e. independent of the detailed ensemble of H. But a slight change 
in the mathematical framework can shift the statistics into a different universality 
class, with a different decay law. For example, restricting H to be essentially one- 
dimensional (i.e. at most quadratic in y )  gave the law (28), namely P(Z)aI-lo. On 
the other hand, (33) shows that making the integral (1) one-dimensional changes the 
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decay to P(I1 
distributions 
derivative of 

)a IT3 whilst (34) shows that three-dimensional integrals have probability 
decaying no faster than P(13)a1;48. Finally, the absolute value of the 
I decays according to (39) as P(I ’ )  a 

Appendix 1. Pulse diffraction theory 

The first step in deriving ( 5 )  is to write the boundary condition (4) as a treble Fourier 
transform over variables k, conjugate to ct, and Q (Q,., Qy), conjugate to R = (X, Y). 
This gives 

exp(-ikct) 11 dr  

xexp(-ikh(r)) 11 dQ exp{iQ (R-r)} 

where E is a positive infinitesimal and r = ( x ,  y ) .  Now we use the fact that the solution 
of the wave equation, which when Z = 0 has the form 

(A21 exp{i(Q R - kct)} 

exp{i(Q R + ( k 2  - Q2)1’2Z - kct)} 

and which propagates towards 2 = +CO, is the plane wave 

(A31 

where the square root is positive imaginary if IQ1 > k, corresponding to a wave decaying 
for increasing 2. From (Al), the required superposition of these plane waves is 

exp(-ikct) 11 d r  

xexp(-ikh(r)) 11 dQ expi{Q - (R-r )+(k2-Q2)1 /2Z} .  (A4) 

Evaluating the angular and radial part of the Q integral gives 

11 dQ exp{i(Q ( R - r ) + ( k 2 - Q 2 ) 1 / 2 2 ) }  

m 

= 2 7  Jo dQQJo(Q(R-rl)exp{i(k2-Q2)1/22} 

(A51 
Inserting this into (A4) and performing the k integration gives the following exact 
representation of the wavefunction: 
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The desired paraxial approximation ( 5 )  follows immediately on expanding for IR - rl/Z 
small and neglecting the first term which is of higher order in 2 - I .  These procedures 
are justified by an argument based on the fact that #J is dominated by its singularities 
(7), taken in conjunction with the assumed small slopes of the wavefront deformation 
h. 

It is worth noting that in the exact wave (A6) the boundary condition (4) emerges 
from the first term as Z + 0, and this term is neglected in the approximation ( 5 ) ;  but 
in spite of this ( 5 )  reduces exactly to (4) as 2 + 0. 

Appendix 2. Convergence of integrals 

The coefficients in (22), which must be finite in order that the power law (23) correctly 
describes the asymptotics of P ( I ) ,  depend on the integrals 

where the I, are given by (12) with t-Co=*l. According to 0 3 the catastrophe 
competition was won by ( a )  the cusp (for the corank-1 case) and ( b )  the elliptic/hyper- 
bolic umbilic (for the unrestricted corank-2 case); therefore the convergence of J: 
need be studied for only these two catastrophes. In each case the ‘dangerous’ regions 
of {Ci} space, where the integral is liable to diverge, are (i) close to the Legendre 
singularity defined by (7) and (lo), and (ii) IC, I + CO. To save tedious and inessential 
complication in what follows, numerical factors will be set equal to unity, variables 
will be scaled without relabelling, and the operation Re will be implied to make all 
square roots vanish whenever their argument is negative. 

( a )  For the cusp, (A7) and the results of § 3 give 
9 

J,,,,=I dC1 I d C 2 ( I d x I d y S ( * 1 - y 2 - x 4 - C 2 x 2 - C ~ ~ ) )  

9 =I dC1 I dC2([ ~ X ( ~ - ~ - X ~ - C ~ * Z - C ~ X ) - ” ~ )  

(i) In the full space of t and {Ci}, the Legendre singularity for the cusp catastrophe 
(Arnold 1976, Sewell 1977) consists of a swallowtail surface with its highest singularity 
at the origin. The sections t = *l involved in (A8) miss the origin, and in the plane 
the singularity is a curve which in one of the cases * has two cusps. To examine 
convergence near one of these cusps it is convenient to make a diffeomorphism to 
local normal form in terms of new variables x, y and parameters CI, C2 with the cusp 
at the origin, i.e. 

(A91 2 *l - x 4  - c*x - C l X  + c2 - x - C l X  

(the transformation can be carried out explicitly but the intricate details are irrelevant 
here). Therefore it is necessary to study the convergence for small CI, C2 of 
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The transformations x/C:/~ + x  and CI/C;/~ + C1 give, successively, 
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The singularity at C2 = 0 is integrable and there is no singularity at C1 = 0. Therefore 
Jcusp converges near the Legendre singularity. 

(ii) In the asymptotic regime /Cl] + CO, IC21 + 00, the transformation x/C:/’ + x 
turns (A8) into 

The term *Ci2 can be neglected for large (CZ~, and the successive transformations 
C1C;312 + C1 and xCT1l3 + x give 

) 9  
Jcusp = dC1 I dCz G3( dx(-x4 -x2 - Clx)-’/’ 

9 

= dC1 CT3 \ dC2 CY3( dx(-x4-x -X~C;~’~)) - ’ /~)  . (A13) 

For large ICl/ the last term can be neglected leaving a convergent integral over x, and 
the C1 and Cz integrals converge at infinity. This concludes the discussion of Jcusp. 

( b )  For the ellipticlhyperbolic umbilic, (A7) and the results of 0 3, together with 
the fact that J +  = J- =J, give 

8 

- Clx -C2y)) E = +1 (hyperbolic); -1 (elliptic). (A14) 

(i) The section t = 1 misses the highest singularity of the Legendre singularity in 
t, {Ci} space. Within this section, i.e. in C1, C2, C3 space, the highest singularities are 
swallowtail surfaces (three in the elliptic case, one in the hyperbolic case (see Arnold 
1976, Sewell 1978)). To examine convergence near one of these swallowtails it is 
convenient to make a diffeomorphism to lccal normal form in terms of new variables 
x, y and parameters C1, C2, C3 with the swallowtail at the origin, i.e. 

1 - x3 - C3(XZ + y 2, - ClX - c 2 y  + c3 - y - x4  - c2x2 - C l X .  (A15) 

Therefore it is necessary to study the convergence for small C1, C2, C3 of 

The successive transformations XC;”~ + x and C2C;’/2 + Cz, C1C;3/4 + C1 give 
8 

J =  \ dC3C;3/4 I dC1 ~ C Z ( ~ ~ X ( ~ - X ~ - C Z X ~ - C ~ X ) - ~ ~ ~ )  . (A17) 
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This closely resembles J&, (A8) and can be simplified by an argument exactly 
analogous to that leading to (A1 l), with the result 

J=IdC3C;3/41dC2Ci2/31dC1(1dx( l -x3-Clx)  - I i 2 )  ’. (A181 

The singularities at C2 = C3 = 0 are integrable and there is no singularity at CI = 0. 
Therefore Jumbilic converges near the Legendre singularity. 

(ii) In the asymptotic regime ]Cl/ + CO, ICz/ + CO, IC31 -*CO, the transformations 
x/C3+x, y / C 3 + y  followed by Cl/C:+C1, C2/C:+C2 turn (A14) into 

8 

+x2+y2+ClX+C2Y - ca )  9 

The term Ci3 can be neglected for large IC3/, and the introduction of polar coordinates 
Q, 8 in the C,, C2 plane, followed by polar coordinates Qli2r, 4 in the x, y plane, gives 

Jumb,liE=JdC3C;41dQQ-312rd8(lmdrr n 0 J2rdda[ r3(cos3d+3& 0 cos4  sin2&) 

+ r  cos(6-~)+rZQ-1’21) I 

The term r2Q-1’2 can be neglected for large Q. Evidently the integrals over C3 and 
Q converge at infinity, leaving the convergence of Jumbilic dependent on the 8 integral, 
which after performing the r integration with the aid of the S function becomes Je where 

Je = W 1 )  

Singularities occur for those 0 values for which the (b integrand contains 4 values 
where both trigonometric factors in the square root vanish. For the elliptic and 
hyperbolic umbilics there are, respectively, three and one such 0, corresponding to 
the asymptotic lines of self-intersection of sheets of the Legendre singularity in C1, 
C2, C3 space as depicted by Arnold (1976) and Sewell (1978). However these 
singularities in the 8 integrand are of the type ln88 and hence integrable. This concludes 
the discussion of Jumbilic. 

2 n  2 r  8 

d8( jn d4[-(cos3 + 3.9 cos 4 sin2 4 )  cos(@ - 4)]-112) . 

Note added in proof. Chillingworth and Romero (private communication) have obtained the remarkable 
relation -yj + 1 = (K + 1)(1 -p i )  between the catastrophe exponents. This holds for all non-modal catas- 
trophes, and also for some modal catastrophes provided the modal terms are considered to belong not to 
the germ but to the unfolding, where they increase K by one and contribute negatively to yj (pj is unaffected). 
In the present context such negative weights appear unphysical and this reassignment of modal terms does 
not seem to affect any conclusions concerning catastrophe dominance. 
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